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Spatial distributions of observables in systems under thermal gradients
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Departures of observables from their thermal equilibrium expectation values are studied under heat flow in
steady-state nonequilibrium environments. The relation between the spatial and temperature dependence of
these nonequilibrium behaviors and the underlying statistical properties are clarified from general consider-
ations. The predictions are then confirmed in direct numerical simulations within the Fermi-Pastg8Ulam
model. Nonequilibrium momentum distribution functions are also examined and characterized through their
cumulants and the properties of higher order cumulants are discussed.
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[. INTRODUCTION the same dimensions. When local equilibrium is no longer
In studies of nonequilibrium physics, especially those ofva"d’ in ggneral, no unique definition of tgmperature existg
steady states, local equilibrium is moét often invoked an _nq a choice needs to be made. This deﬂmuon of nonequi-

’ brium temperature can be thought of as a choice of a coor-

this assumption simplifies calculations through the use of,. : . .
N o . ) dinate system, on which the physics behavior of the system
equilibrium statistical mechanics and thermodynaniitk will not depend. If we assume analyticity FiT, the devia-

Igﬁulricgils?ﬁgglg#frsnacsts)unn':gt::%nmalE\évsoktJZZrL\J/ZelngsthI?Iggzll-tions %o can be expanded in even powers as above. We shall
S . P N see below that this expansion is adequate for describing the
equilibrium conditions are not assumed, very little can be . fth
computed analytically and even the definition of temperaturé) roperties of the system.
is no longer uniqué2. 3. Efforts have been made to quantify The heat flowd is the flow of energy and can be unam-
9 gqugz,3]. ENOrS . q biguously defined in Hamiltonian systems. Near equilibrium,
the goodness of local equilibrium assumptions or how trans-

> ; L it satisfies Fourier’s law locally a3=-«VT(x), wherex is
port coefficients differ from their linear response values, o . S
though only few quantitative studies exigt—11. Without the therma_l CondUCt'\./'.tyT(.X) IS the temperature profile in-
the knowledge of the nonequilibrium steady-state distribu-s'de’.andx is the position 'T‘S'de th? systgm. In systems we
tion, theoretical development becomes quite restrictive. Wgon_&der, the energy flow is one dlmer_13|onal and energy is
explore how observables depart from their equilibrium ex-Putin or taken out oply at the boundaries so t.f_haioes not
pectation values within a given nonequilibrium steady statedeloend orx. Fourier's law can then be U.S.ed. n E(q') to
specifically focusing on the spatial dependence of the nonf_e—express the local (_jepartures frqm equilibrium m_tgrms of
equilibrium expectation values within a given system andthe temperature_ profllé”(/x), or equivalently the positiox
their local temperature dependence. To make this concret8NC€ the coefficient€, C’ are known,
heat flow in the Fermi-Pasta-UlatkPU) 8 model is simu-
lated to test the predictions. We further quantitatively exam- J )2 , 4
ine the relationship between the momentum cumulants and %0=Co ()T *Do (DT o 2)
the distribution and find that the lower order cumulants char-

acterize the distribution quite well. hat Fourier’s | itself . ilibri
For systems in thermal gradients, it is natural to consideyVe note that Fourier’s law itself receives nonequilibrium

. o . h
how an observabl® in the nonequilibrium steady state de- corrections|11], which is why the coefficient op(J%) term

parts from its equilibrium value, denoted,, The normal- in the expansion2) differs from that of Eq(1). In the fol-
ized deviation from equilibrium, whe®.#0, can be ex- lowing, the objectives will be to make the formula more

panded as explicit and understand its physical properties under rather
general assumptions. This relation, together witff) [and
00 O-0¢ VT2 | VT consequentlyl(x)] provides the basis for defining how non-
d0= "5 = Oug =Col 7| *Co| 7|+ equilibrium observables vary inside a finite system both near

and far from global thermal equilibrium.

1

When O.=0, as is the case for higher order momentum

cumulants, one can normalize by an observable which has Il. FPU MODEL AND TEMPERATURE PROFILES

The results we present here are derived from general con-
siderations and we develop them in conjunction with a model
*Email address: ken@phys-h.keio.ac.jp in which they can be explicitly analyzed. We study the FPU
"Email address: dimitri@mirage.physics.yale.edu B Hamiltonian, defined generally in the form
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We use the FPU model since its physical properties are of -
wide interes(see Refs[12—-15 and references thergirAlso

as the model is well studied, we can understand the physical
properties we find within a larger physics context. Under the
rescalingﬁk:p&wzvﬁ, G¢=q,wVm, we obtain the conven-

tional form of the FPUB model, 0O 20 40 60 80 100 120
X
1< B
_ 2 ’ "2 ' a4 FIG. 1. Some examples of temperature profiles for the FPU
== + - + = -
Hs 220 P+ (Gl = G 2(qk+l ). @ model withL=128. The thermostat temperatures at the boundaries

are(T3,79)=(0.88,16.72,(2.4,15.2,(4.4,13.2,(6.6,11.0 for the

~ . four thermal profiles. The profiles predicted from K@) are indi-
where Hz=H/(m?o?). We note that in finite temperature cated byx and agree well with the results from the numerical
simulations, changing the temperature is equivalent tGjmulations.
changing the cogplinw. Under the additional rescaling],
=p/VB, 9,=0q/VB, one obtains a unique, dimensionless
Hamiltonian H=Hg_,=BHg, v;/hich 2we shall use without
any loss of generality. Sincg=pp,", the temperatures in - 1o temperature profiles and heat flow calculations,

the two formulationsH andHy are related byr=pT'. Fourier's law can be verified to hold up to corrections of the

In this work, we study the nonequilibrium steady statefoy (1) and the thermal conductivity can be obtained for
physics of the theory under thermal gradients, making use of gien temperature and system size. In the one-dimensional

n_onequ?librium states_ constructed numericaffyor gener_al (1D) FPU model,x depends on the system sizeand does
discussion, see, for instance, Ref$6,17.) The model is o gisplay bulk behaviof13]. « is also dependent on the
thermostatted at the boundariks0,L at various tempera- temperature in a known manngt4]. Generally, in cases

O . . . 7
tures Ty, T3, using the generalized versions of Nosé-Hoover hare we have a one-dimensional temperature gradient, the

thermostats as detailed in RgL8]. These additional thermo- 1o mnerature profiles can be obtained by integrating Fourier's
stat degrees of freedom are added only at the boundaries a as long as we are not too far from equilibrium

the degrees of freedom inside the syst@hw k<L) are ex- [11,18,19:
clusively those of the Hamiltonian E@4). By numerically
integrating the equations of motion of the whole sysi{@m
cluding those of the thermostatsve obtain the behavior of
physical observables in the non—equilibrium steady state by
averaging over time, in the standard manfief]. The local (5)

temperature at site is defined asT,=(pf). In this work, we  x is the continuum extrapolation of the discrete lattice index
study the physics inside the system, away from the boundk. We note here thal is a constant within the system for a
aries by much more than the mean free path of the systegjiven set of temperature boundary conditions since there are
[14]. The sensitivity of the results to the manner in which weno heat sinks or sources insidg. in the integral is the tem-
apply the boundary conditions—including both the numberperature extrapolated to the boundary and is explained
of thermostats and the strength of the couplings—have bedselow.

examined to ensure that physics results below remain inde- In many situations, the temperature dependence of the
pendent of their implementatiofThe only exceptions are thermal conductivity, within some temperature range, can be
the boundary jumps in temperature which we discuss bglowwell described by
The numerical integrations were performed using the fourth

order Runge-Kutta routines with time steps of 0.605.02 k(M) =cT™. (6)

for 10'-10'° time steps. The equilibrium properties have \while this power law may not hold globally i, it is often
been readily verified with this methdd4,1§. the case that it is sufficient for the region of interest, which is

In Fig. 1 some examples of temperature profiles for thehe case here. In such a situation, the temperature profile can
FPU theory are shown. Generically, there are temperaturge explicitly computed from Eq(5) to be[18]

jumps just inside the boundaries with smooth temperature - 1(1-
S o ; T,\7|x v
variations within. The boundary jumps become larger as one To1-1-(=2 2 y#1
T, L '
y=1.

'temperatures are equal to the prescribed thermostat tempera-
tures to within few in 18 relatively.

T(x)
k(MAT==3x,  I==pL(Os1 = U + (Ae1 — A1

moves away from global equilibrium. The jumps are dy- _
namical in the sense that they depend on the model, the T0 = T, \
transport coefficient, heat flow, as well as the type of bound- T1< ) ,
ary conditions employed. The temperatures at the boundaries
are at the thermostat temperatures to high degree of prediere, T, , denote the boundary temperatures obtained by ex-
sion. For instance, in the examples of Fig. 1, the boundaryrapolating the temperature profile inside the system and dif-

)

T
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fers from the thermostat temperaturéﬁy2 by the boundary the observables should behave in nonequilibrium locally in
temperature jumps. From Eg®) and(6), the temperatures space, given the thermal conductivity. Using this property
Ty, are found to obey a relation and Eq.(6), we obtain to leading order that observables will
deviate from their local equilibrium values as

1-y _ T1-y
- JL - Q (8) IT0) 72

C 1- Y ' 50 = CO (

To understand the temperature profile of the whole sys- _ _ . _

tem, we further need an understanding of the temperaturde€rea, is defined through this equation and should be pro-
jumps at the boundarie20]. Similar boundary slips have portional toJ2. This implicitly contains the spatial distribu-

been seen in sheared systems and these effects have b&@R since the temperature profile is known and can be un-
known for a long time in real systems. To leading order, thederstood as in Eq.7).

2
) =ao T2 (1)

temperature jumps can be described (mjth n being the While these arguments apply to any physical observable
normal to the boundayy in the system, we choose to study cumulants of mompnta

mainly for the following reasons: conceptual and practical.

T —T-°| __ac [Tj_—y_-l-l—'y] _ A‘&_-l-i‘ (i=1,2 There seems to be no universal rigorous definition of local

L N Y L ! an o equilibrium, yet the concept in the least seems to include a

9) unigue meaning for temperature, which in this case would
lead to the Maxwellian distribution fop. To put it another

Here\ is the mean free path of the excitations, which for theway, when the momentum distribution is not Maxwellian, we
FPU lattice model, is essentially th&T) (up to a constant can choose different definitions of the temperature based on
factor of order } due to kinetic theory argumenfd4]. «  the various moments gb [2,3]. The cumulants of the mo-
reflects the efficacy of the boundary conditions. The last rementum distribution provide insight into how the physical
lation is obtained by using Fourier’s law and E®). The  properties of a nonequilibrium system deviates from those of
jumps on the hot and cold side are the same provided thecal equilibrium. The cumulants are well defined local vari-
system is reasonably close to equilibrium. The jumps at the@bles and their values in local equilibrium are known pre-
boundaries and the temperature profile within Ef). de-  cisely. The low order cumulants are defined as
scribe the temperature profile of the complete system. The 2N\ _ /2 I _ s d 22
predicted values for the temperature profiles are plotted in =P, L) =) = P77,
Fig. 1 at a number points inside the systexs symbol _
away from the boundaries and are seen to t()zsco%sisteit with (p%) =(p%) ~ 1Xp"¢p%) + 307 ..., (12)
the simulation results. The thermal conductivity is roughlywhere, inequilibrium,
constant with respect to the temperature in this region so that
vy=0 was used in the profile calculations. This demonstrates <<p2>>eq:T, {(pNeq=0(n#2). 13
that all aspects of the nonequilibrium temperature profile carrhis property is also of practical importance. Since the de-
be quantitatively captured through E@#) and(9), irrespec-  viations we compute can be small, it is desirable to use ob-
tive of whetherx(T) is a power law in temperature for all  servables whose local equilibrium values are known exactly.
or not. With this understanding &f(x) we can now turn to |n this case in thermal equilibriun®e,=0, so we usesy

the question of general observables. =((p®)/T". We list the coefficient for the cas@=((p*) in
Table | for the FPUB model as well asp* theory[18] for
I1l. SPATIAL DEPENDENCE OF CUMULANTS IN THE comparison.
NONEQUILIBRIUM STEADY STATE Let us investigate how well Eq11) describes the spatial

N N i
In nonequilibrium steady states, physical observableg'strIbUtlon of{(p"))/ T*. We find

show deviations from their equilibrium values reflecting the  ((p%) 21y
lack of local equilibrium in the system. The behavior of the v =@ Tt
observables have been seen to be well described bylkq.
on average, at least in some cagkl. Here, we now would T, \ 277 | x (VA7) 20 Dtsy
like to investigate a more detailed issue—whether these = Ty 1-|1- T_l L '
properties can be used to understand the nature of the spatial (14)
profiles of these observables in a given nonequilibrium situ-
ation. We will assume that within some rangeTodndL that s, is the temperature dependence of the coeffig@nivhich
we can represent the expansion coefficients in(Epas is reflected in Table I. To understand the validity of the pre-

_ sl a diction Eq.(14) , fits were made with just one parameggr

Co— /.LoT OL 0, (10) f . . . . . .
or the whole profile. We find that this describes the situation
The behavior ofC,, with respect tdl,L clearly must depend quite well, as seen in the examples of Fig. 2, where the
on the dynamics of the theory and is not expected to bgredictions are denoted by dashes. In these figures, we have
generic. compared the fits with the spatial as well temperature depen-
To study the spatial distribution of physical observables indence of((p%) for the four systems shown in Fig. 1. In this

nonequilibrium, we make use of E@) which describes how temperature range, temperature dependence of the thermal
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TABLE I. Nonequilibrium coefficients C,=(uT)L* for 100 T 3
{pM)IT? [cf. Egs.(10) and (14)]. The results are shown for the @ﬂl
FPU 8 model and thep* theory ind=1-3 dinensions. The value 1
of sis extracted from fitting to several temperatures. 10F o Q’#’ 3
3t
S S X
(T a L . 9(0..5 )
FPUg model ind=2 ke
T=1 295) 0.874) e ,
T=8.8 131) 0.991) Y 1
T=88 7.44) 1.042) -J
¢'theory FIG. 3. J dependence of the nonequilibrium expansion coeffi-
d=1 T=1 3.324) 0.9615) cienta, for various boundary condition(sT‘f,Tg) and system sizes
T=5 1.66) 1.189) L. The dashed line is 3.72 and the~J? behavior of the coefficient
d=2 T=1 1.94) 1.095) can be clearly seen, as predicted from theory. Each data point rep-
T=5 0.42) 1.62) 'esents a particular temperature boundary conditior.fo82 (),
d=3 T=1 41 0.9610) L=64(0), andL=128(0O) systems.
T=5 0.25) 1.6(6)

conductivity is weak so we useg¢t=0 ands;=-0.14 ex-

behavior is clearly well described bg,~ const<J?. The
coefficienta, seemsL independent and this can roughly be
understood since? grows inL in a manner similar t&€,. We

tracted from the data in Table I. Similar results were foundh@ve in addition systematically studied the results to see if
for different temperature boundary conditions and for differ-We can discern the contrlbution of higher order terms in the
entL. To further verify the underlying physics, we study the €xPansiong1), (2) (of orderJ” and highey but have found

J dependence of the coefficieat. The behavior for various N consistent evidence for them. In other physical situations,
systems, including the four systems in Fig. 1, are shown ionanalytic behavior seems to have been seen in some cases
Fig. 3. Each data point represents a system with a particuld?1:22- . -

size and temperature boundary conditions. The central tem- While the logic seems to work for the lowest nontrivial

perature is around=8.8 and is kept fixed. The observed Order cumulant{{(p*), we find it instructive to analyze if it

<<p4>>/T2

0.01 [

0.01

works at higher orders. In this direction, we have analyzed
the next nontrivial ordef(p®)) and have found that its be-
havior is quite consistent with physics of Ed.1) , as was
the case of(p*), in all the systems we have studied. In

'\% practice, higher order cumulants are more prone to errors and
0.1k . oo
) E the computations are more difficult. The results for the same
9 four systems in Fig. 1 are shown in Fig. 4. As in t{p*)
case, the coefficierds showsJ? behavior within error, as it

should.ag shows a weak dependence, as we would generi-
cally expect. A common value a=-1.6 was adopted for

all the data in Figs. 4 and 5. What is evident is that the spatial
behavior of nonequilibrium observables can be explicitly re-
lated to transport and other physical properties of the system
using rather general considerations. From the cumulants we
now consider what can be said about the full momentum
distribution function.

IV. CUMULANTS AND THE DISTRIBUTION

The cumulants are quantitative indicators of the non-
Maxwellian nature of the momentum distribution or the vio-
lations of local equilibrium. All the cumulants are nonzero
unless the system is in local equilibrium, in which case only

FIG. 2. Top: Spatial dependence of the rescaled fourth momenth€ linear and quadratic cumulants are nonzero. There are
tum cumulant{(p*)/T2 for the four systems in Fig. 1. Larger cu- Very few problems where cumulants can all be computed
mulant values are seen for larger boundary temperature differencegnalytically and it becomes numerically intractable to com-
Bottom: Temperature dependence (9p*)/T? for the same sys-
tems. In both panels, the predictions Efjl) are indicated by the

dashes.

pute them as we go to higher orders. It is then of interest to
see how well the lower order cumulants characterize the dis-
tribution. The cumulants are properties of the distribution
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10 used, which leads t¢(p>™1))=0. We see from this equation

that given all the cumulant®r equivalently, momenjswe
may recover the distribution function by performing an in-
verse Fourier transform. However, in practice, not all the
cumulants are available.

It might seem that the symmetry under the reflection
g,p<—q,—p (lattice indices suppressed here to avoid clut-
tering the formulapis broken by the boundary conditions of
E the system, which are asymmetric in the direction of the
0 20 40 60 80 100 120 lattice. However, this isiot so; the reflectiony, p«— —q,—p is

x preserved under the boundary conditions since the degrees of
10 e i freedomq, p are not directly related to the spatial direction

3 E of the lattice. This can be explicitly seen by checking that the
equations of motion preserve this symmetry. It should be
noted thatl defined in Eq(5) is symmetric under this reflec-
tion and that it is rather the correlations @fand p that are
nonzero, not individuat], p’s. In practice, the odd moments
(p>™Yy are computed in all our simulations at least up to
seventh order, in some cases up to 19th order. We have
checked that they are always zero within statistical errors.

Intuitively, we expect the lower order cumulants to be the
leading order results with higher order cumulants becoming
more important as we move further away from equilibrium.

FIG. 4. Spatial dependencéop) and temperature dependence |n Fig. 6, we plot therelative differenceof the measured
(bottom) of ((p%)/T* for the four systems in Fig. 1. Larger cumu- distributionf(p) to the thermal distributioriy(p) for the dis-
lant values are seen for larger boundary temperature differencegipytion directly measured in the simulations and the distri-
Predictions are shown with dashes. bution computed from the low order cumulafitp?49). The

function, which has an infinite number of degrees of free-cOMparisons are performed for the four systems in Fig. 1 at a
dom. A priori, there is no reason to assume that the loweP0int in the middle of the system. From these graphs, we
order cumulants characterize the distribution. In order tePbserve the following(@ The agreement between the distri-

clarify this issue, first note that the distribution functibgp) ~ Pution computed from lower order cumulants and the distri-

and the cumulants are related explicitly through the generaf2Ution is quite good in all casegp) the relative deviation
ing function as from the thermal distribution is larger as we move away from

equilibrium(largerAT/T), as expectedr) the small discrep-
up iy _ ~ ity N ancy between the computed distribution and the measured
dp €*f(p) = (e"?) = ex 2 nl {p"n one seems to be larger for largA/T; (d) the deviation
=0 from the thermal distribution becomes more noisy for
2 (—ud)n smaller AT/T, since the deviation itself is smaller and the
=exp| 2 «p* ). (15)

0.01 |

0.01 |

n

W relative error is larger. We mention here that strictly speak-

n=0 ' ing, the distributions can have different behavior, such as

Here, in the last equality, the symmetry ungers—p was  long tails, beyond the region we have investigated. However,

these tails would have to be quite small since the distribu-
tions decay as expp?/(2T)] and the agreement is good up
to reasonably large, as seen in Fig. 6. We have examined

10000 T

%

1000 E numerous systems for differefit and L and found similar
Py ] good agreement. Therefore we see that the lower order cu-
S 100 ___9»"5’9x E mulants provide good physical observables that quantita-
0.0 X ] tively describe the deviations of the systems from local equi-

10 F

librium, at least in the FPU model.

-8 ] It is possible to examine the characteristics of the higher
order cumulants. It should be noted that unlike the even mo-
ments(p?"), even cumulants{{p®")), need not be positive
and in general will not be. So to study the general trend of
FIG. 5. J dependence of the coefficiea for various boundary ~ the cumulants for higher order, we examine the magnitude of
conditions (T2, T9) and system sizet. The dashed line denotes the cumulants. In Fig. {left), we show the behavior of the
156 J2. ~J2 dependence of is evident, in agreement with the cumulants up to 20th order for the same four systems in Fig.
predictions. Each data point represents a particular temperaturk, specifically for the point at which the momentum distribu-
boundary condition for system sizés=32(x), L=64(0), andL tions in Fig. 6 were computed. Only data points with reason-
=128(0), as in Fig. 3. able error are shown and an explanation of the relevant errors

J
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1e+08 [ T T T T T T T T >/I</‘
—~ ATIT=18 1e+06 - 7
= = 10000 - par -
‘:\L :A [ e /g )
= & 100} P’ .
M _ % o _
1} % 8 J
05 1 1 1 1 1 |
10 5 0 5 10 § X A
0.01 E 21 ) ) ) ! ! ! 1]
p 4 6 8 10 12 14 16 18 20
08 n
0.7 1e+06 T T T T T T T T
0.6 é
Y 05 10000 | é -
& 04 ~ - d
“E 03 E 100 |- ’ .
é 0.2 =3
0.1 A 1} 4
0 5
-0.1 v 0.01 | . 4
0.0001 -’é .
0.2 4 6 8 10 12 14 16 18 20
n
0.15
~ FIG. 7. (top) Higher order cumulantg{(p")|/T"? (n< 20) for
% 0.1 the four systems in Fig. XT9,T9)=(0.88,16.72, (X), (2.4,15.2,
B 0.05 (0O), (4.4,13.2, (O) and(6.6,11.0, (A). Only points with reason-
é ’ ably small error are shown. The dashed line is 5.0
0 X 107 exp(1.5n) drawn for comparison(bottom) The equilibrium
cumulants forL=16(Xx), L=32(0), L=64(A) and L=128(0O)
-0.05 &L . L L 1 compared to the rough estimate, Ef8) (dashes The cumulants
-10 -5 0 5 10 {p?) were measured at the middle of the system with number of
p samplesN=10° at T=8.8.

are difficult to obtain. The difficulty lies mainly in the statis-
tical error in the simulations. This can be estimated from the

y number of samples for computing the expectation values as
&

=

2 APY _n (16)

= M) N

where A denotes the error anlll is the total number of

samples or the number of time steps in the simulation. Note

that{{(p™)=(p")+- -+ so that an error estimate for the moment
FIG. 6. The relative deviation of the distribution from the Max- should suffice as the error estimate for the_ Cum_ulant. _An

well distribution for the four systems in Fig. 1. Distribution ob- &dequate value for the moment can be obtained in equilib-

tained from the cumulantgp®),((p®) (dasheglare compared with UM,

the measured distributionésolid). The agreement is excellent.

AT/T denotes the boundary temperature difference over the average " ~ (-1 (17)
temperature and is an indication of how far the system is from T2 o
equilibrium.

Combining these relations, we find the statistical error for the
is given below. We see an increase in the magnitude with theumulants which increases rapidly for higher order cumu-
order is roughly exponential. This growth is far milder thanlants,
the (2n)! seen in Eq(15) .

The behavior of the higher order cumulants is of some A(((D”))) _(h=1ltn
import and we briefly explain semiquantitatively why they V2 N

(18)
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These estimates for the error also apply to the equilibriumarities to the cumulant expansion since the cumulants can be
situation. In contrast to the nonequilibrium cumulants, therelated to the moments. Grad’s approach takes as an ansatz a
equilibrium cumulants should vanish, with the exception offinite moment truncation and uses a transport equation to
{(p?). As the measured values will converge to zero, at anyetermine the coefficients in the expansion. In our study, we
given time step in the simulation, their values will be generi-extract each cumulant independently from a direct measure-
cally nonzero. In Fig. qright), we compare thequiliborium  ment and do not use a transport equation approach. Since the
cumulants, in the middle of the system to the above erromoments can be computed from the cumulants and we find
estimates. It can be seen that the rough estirfie8eseems  that the few leading cumulants reproduce the steady-state
to be consistent with the results. As one samples ngire  solution quite well, it would be interesting to see how a Grad
increasep these will tend to zero. However, for a finite solution might be related and explore how a Boltzmann-type
sample size, this is found to explain the order of the uncerapproach might be used to understand states far from equi-
tainty. librium, as compared to the direct microscopic molecular

With N=10° time steps—which we used for the values in dynamics solutions employed here.

Fig. 7—for eighth and tenth order cumulants, the errors are The notion of temperature in nonequilibrium simulations
0.03 and 0.3. As we can see from Fig(l&ft), this means is unambiguous as long as we adopt a particular definition of
that we can obtain up to the eighth or tenth cumulant withthe temperature. In our analysis, we adopted a kinetic tem-
reasonable error for the four systems but the higher ordeperature, the ideal gas temperature, as such a definition. The
cumulants are expected to be unreliable for systems closer @ifferences in temperature due to various definitions are mea-
equilibrium. These error estimates are quite consistent witisures of deviations from local equilibrium. Seen in this light,
the estimates we obtain from the statistical properties of tha&ve can understand the nonzero cumulants computed above
simulations. These errors can be overcome with higher staas the discrepancy between temperatures defined from the
tistics which quickly becomes unrealistic for higher order.various moments op. Other natural definitions of tempera-
We have analyzed systems with various other temperaturiire, such as “configurational temperature” based on the po-
boundary conditions antd and have found the increasing tential, or that based on the energy density, involve the po-
behavior of the cumulants seen in Fig.(léft) to be quite tential energyfor recent discussions, see, for instance, Refs.
generic. [23] and [18]). In lattice models, definitions of temperature
that involve the potential are subtle, since they are, strictly
speaking, neither unique nor local because the potential nec-
V. SUMMARY AND DISCUSSIONS essarily couples different sites. It would be interesting to
The spatial distribution of cumulants in nonequilibrium compare these temperatures with the kinetic one in the FPU

steady states under thermal gradients were predicted frofodel. _ _ o
general considerations and tested in the FPU model. The A comment is perhaps in order: lack of local equilibrium
understanding of the temperature profile for a given nonequibehavior can in some cases be attributed to the lack of coarse
librium steady state, combined with the deviations of physi-graining [4]. Heuristically speaking, if one does not have a
cal observables from their equilibrium values, can be used t§rge number of degrees of freedom, one cannot see the equi-
develop a consistent description of the spatial distribution ofibrium behavior. This is alifferent phenomenon from the
observables. In principle, the behavior of observables probtase at hand, since the effective number of degrees of free-
ably have higher order corrections in the nonequilibrium nadom is the number of samples in the ensemble average
ture of the system, which in this caseVig, but higher order ~Which is taken in the time averaging procedure. This number
effects could not be separated within the current numericdf huge. In fact, as is well known, in these types of en-
simulation results. sembles, it makes perfect sense to talk even about the statis-
We quantitatively analyzed the relation between the modical mechanics of one spin degrees of freedom. This is also
mentum cumulants and the distribution in the nonequilibriumduite clear from our results; the deviations from local equi-
steady state. It was found that the lower order cumulant§Prium seen in Figs. 2 and 4 and E@,) are of definite sign
characterize the difference of the nonequilibrium distributionand no amount of averaging over space will make it zero. So
from the one in local equilibrium quite well. Understanding coarse graining willnot average out the violations of local
and characterizing the properties of the distribution is ofequilibrium seen above. Also, the non-local equilibrium
manifest importance since the distribution function for physi-Properties found in this paper pertain to systems in the non-
cal variables allows us to Compumy observable con- equilibl’ium Steady state and .thel’efore are not tranS-ient.. .
structed from these variables. To understand the properties of We have also performed similar analyses of spatial distri-
any local variable in the nonequilibrium state, the physicalutions on the¢* model. The physical properties of the
properties of the coordinate variables also need to to be clarmodel are different from those of FPU model and we intend
fied. We have also computed some behavior of higher cumu© report on this in the near future.
lants. The expansion of the nonequilibrium distribution func-
tion in terms of cumulants has similarities to Grad’s method
in kinetic theory[1]. Grad proposed an ansatz for the non- ACKNOWLEDGMENT
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around the equilibrium distribution in terms of moments of K.A. was supported in part by a Grant-in-Aid from the
the molecular velocity. Such a moment expansion has simiMinistry of Education, Science, Sports and Culture.

051203-7



K. AOKI AND D. KUSNEZOV PHYSICAL REVIEW E 70, 051203(2004)

[1] See, e.g., S. R. de Groot and P. Madon-equilibrium Ther-  [15] J. Ford, Phys. Rep213 271(1992; S. Lepri, R. Livi, and A.

modynamicsNorth-Holland, Amsterdam, 1962D. Jou, G. Politi, ibid. 377, 1 (2003.
Lebon, and J. Casas-Vazqué&tended Irreversible Thermo- [16] P. GaspardChaos, Scattering and Statistical Mechani€am-
dynamics(Springer, Berlin, 1996 bridge University Press, New York, 1998. R. DorfmanAn
[2] J. Keizer,Statistical Thermodynamics of Nonequilibrium Pro- Introduction to Chaos in Nonequilibrium Statistical Mechanics
cessegSpringer, New York, 198y (Cambridge University Press, Cambridge, England 1999
[3] J. Casas-Vazquez and D. Jou, Rep. Prog. PI§6.1937  [17] D. J. Evans and G. P. Morris§tatistical Mechanics of Non-
(2003, and references therein. equilibrium Liquids (Academic, New York, 1990 W. G.
[4] A. Tenenbaum, G. Ciccotti, and R. Gallico, Phys. Rev2B, Hoover, Computational Statistical Mechanic¢&lsevier, Am-
2778(1982. sterdam, 1991 Time Reversibility, Computer Simulation, and
[5] G. Ciccotti and A. Tenenbaum, J. Stat. Ph28, 767 (1980 Chaos(World Scientific, Singapore, 1999Ann. Phys.(N.Y.)
C. Trozzi and G. Ciccotti, Phys. Rev. 29, 916 (1984). 295 50 (2002
[6] B. Hafskjold and S. K. Ratkje, J. Stat. Phy&3, 463(1995. [18] K. Aoki and D. Kusnezov, Ann. PhysN.Y.) 295 50 (2002;
[7] W. Loose and G. Ciccotti, Phys. Rev. A5, 3859(1992; M. Phys. Lett. B477, 348(2000.
Mareschal, E. Kestemont, F. Baras, E. Clementi, and G. Nic{19] C. S. Kim and J. W. Dufty, Phys. Rev. A0, 6723(1989; N.
olis, ibid. 35, 3883 (1987; A. Tenenbaum,bid. 28 3132 Nishiguchi, Y. Kawada, and T. Sakuma, J. Phys.: Condens.
(1983. Matter 4, 10227(1992.
[8] R. M. Valesco and L. S. Garcia-Colin, J. Non-Equilib. Ther- [20] K. Aoki and D. Kusnezov, Phys. Lett. 265 250 (2000.
modyn. 18, 157(1993. [21] G. Marcelli, B. D. Todd, and R. J. Sadus, Phys. Rev6g
[9] A. Dhar and D. Dhar, Phys. Rev. Let82, 480(1999. 021204(200D; J. P. Ryckaert, A. Bellemans, G. Ciccotti, and
[10] S. Takesue, Phys. Rev. Let#4, 252(1990. G. V. Paolini, Phys. Rev. Lett60, 128(1988; S. Rastogi, N.
[11] K. Aoki and D. Kusnezov, Phys. Lett. 809, 377 (2003. Wagner, and S. Lustig, J. Chem. Phyi04, 9234(1996); D.
[12] H. Kaburaki and M. Machida, Phys. Lett. 281, 85(1993; A. Evans and H. J. M. Hanley, Phys. LeB0A, 175(1980.
Maeda and T. Munakata, Phys. Rev.52, 234 (1995. [22] K. Kawasaki and J. D. Gunton, Phys. Rev.8A2048(1973);
[13] S. Lepri, R. Livi, and A. Politi, Phys. Rev. Lett78, 1896 H. Wada and S. Sasa, Phys. Rev6EF, 065302R) (2003.
(199%); Europhys. Lett.43, 271(1998. [23] A. Baranyai, Phys. Rev. B1, R3306(2000; T. Hatano and D.
[14] K. Aoki and D. Kusnezov, Phys. Rev. Let86, 4029(2001). Jou,ibid. 67, 026121(2003.

051203-8



