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Departures of observables from their thermal equilibrium expectation values are studied under heat flow in
steady-state nonequilibrium environments. The relation between the spatial and temperature dependence of
these nonequilibrium behaviors and the underlying statistical properties are clarified from general consider-
ations. The predictions are then confirmed in direct numerical simulations within the Fermi-Pasta-Ulamb
model. Nonequilibrium momentum distribution functions are also examined and characterized through their
cumulants and the properties of higher order cumulants are discussed.
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I. INTRODUCTION

In studies of nonequilibrium physics, especially those of
steady states, local equilibrium is most often invoked and
this assumption simplifies calculations through the use of
equilibrium statistical mechanics and thermodynamics[1].
The local equilibrium assumption allows the use of the equi-
librium distribution function to compute observables. If local
equilibrium conditions are not assumed, very little can be
computed analytically and even the definition of temperature
is no longer unique[2,3]. Efforts have been made to quantify
the goodness of local equilibrium assumptions or how trans-
port coefficients differ from their linear response values,
though only few quantitative studies exist[4–11]. Without
the knowledge of the nonequilibrium steady-state distribu-
tion, theoretical development becomes quite restrictive. We
explore how observables depart from their equilibrium ex-
pectation values within a given nonequilibrium steady state,
specifically focusing on the spatial dependence of the non-
equilibrium expectation values within a given system and
their local temperature dependence. To make this concrete,
heat flow in the Fermi-Pasta-Ulam(FPU) b model is simu-
lated to test the predictions. We further quantitatively exam-
ine the relationship between the momentum cumulants and
the distribution and find that the lower order cumulants char-
acterize the distribution quite well.

For systems in thermal gradients, it is natural to consider
how an observableO in the nonequilibrium steady state de-
parts from its equilibrium value, denotedOeq. The normal-
ized deviation from equilibrium, whenOeqÞ0, can be ex-
panded as

dO ;
dO
O =

O − Oeq

Oeq
= COF¹T

T
G2

+ CO8 F¹T

T
G4

+ ¯ .

s1d

When Oeq=0, as is the case for higher order momentum
cumulants, one can normalize by an observable which has

the same dimensions. When local equilibrium is no longer
valid, in general, no unique definition of temperature exists
and a choice needs to be made. This definition of nonequi-
librium temperature can be thought of as a choice of a coor-
dinate system, on which the physics behavior of the system
will not depend. If we assume analyticity in¹T, the devia-
tionsdO can be expanded in even powers as above. We shall
see below that this expansion is adequate for describing the
properties of the system.

The heat flowJ is the flow of energy and can be unam-
biguously defined in Hamiltonian systems. Near equilibrium,
it satisfies Fourier’s law locally asJ=−k¹Tsxd, wherek is
the thermal conductivity,Tsxd is the temperature profile in-
side, andx is the position inside the system. In systems we
consider, the energy flow is one dimensional and energy is
put in or taken out only at the boundaries so thatJ does not
depend onx. Fourier’s law can then be used in Eq.(1) to
re-express the local departures from equilibrium in terms of
the temperature profileTsxd, or equivalently the positionx
once the coefficientsC, C8 are known,

dO = COS J

ksTdT
D2

+ DO8 S J

ksTdT
D4

+ ¯ . s2d

We note that Fourier’s law itself receives nonequilibrium
corrections[11], which is why the coefficient ofOsJ4d term
in the expansion(2) differs from that of Eq.(1). In the fol-
lowing, the objectives will be to make the formula more
explicit and understand its physical properties under rather
general assumptions. This relation, together withksTd [and
consequentlyTsxd] provides the basis for defining how non-
equilibrium observables vary inside a finite system both near
and far from global thermal equilibrium.

II. FPU MODEL AND TEMPERATURE PROFILES

The results we present here are derived from general con-
siderations and we develop them in conjunction with a model
in which they can be explicitly analyzed. We study the FPU
b Hamiltonian, defined generally in the form
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H̃ = o
k=0

L F p̃k
2

2m
+

1

2
mv2sq̃k+1 − q̃kd2 +

b

4
sq̃k+1 − q̃kd4G . s3d

We use the FPU model since its physical properties are of
wide interest(see Refs.[12–15] and references therein). Also
as the model is well studied, we can understand the physical
properties we find within a larger physics context. Under the
rescalingp̃k=pk8v

2Îm3, q̃k=qk8vÎm, we obtain the conven-
tional form of the FPUb model,

Hb =
1

2o
k=0

L Fpk8
2 + sqk+18 − qk8d

2 +
b

2
sqk+18 − qk8d

4G , s4d

where Hb=H̃ / sm2v4d. We note that in finite temperature
simulations, changing the temperature is equivalent to
changing the couplingb. Under the additional rescalingpk8
=pk/Îb, qk8=qk/Îb, one obtains a unique, dimensionless,
Hamiltonian H;Hb=1=bHb, which we shall use without
any loss of generality. Sincepk

2=bpk8
2, the temperatures in

the two formulationsH andHb are related byT=bT8.
In this work, we study the nonequilibrium steady state

physics of the theory under thermal gradients, making use of
nonequilibrium states constructed numerically.(For general
discussion, see, for instance, Refs.[16,17].) The model is
thermostatted at the boundariesk=0,L at various tempera-
turesT1

0,T2
0, using the generalized versions of Nosé-Hoover

thermostats as detailed in Ref.[18]. These additional thermo-
stat degrees of freedom are added only at the boundaries and
the degrees of freedom inside the systems0,k,Ld are ex-
clusively those of the Hamiltonian Eq.(4). By numerically
integrating the equations of motion of the whole system(in-
cluding those of the thermostats), we obtain the behavior of
physical observables in the non–equilibrium steady state by
averaging over time, in the standard manner[17]. The local
temperature at sitek is defined asTk=kpk

2l. In this work, we
study the physics inside the system, away from the bound-
aries by much more than the mean free path of the system
[14]. The sensitivity of the results to the manner in which we
apply the boundary conditions—including both the number
of thermostats and the strength of the couplings—have been
examined to ensure that physics results below remain inde-
pendent of their implementation.(The only exceptions are
the boundary jumps in temperature which we discuss below.)
The numerical integrations were performed using the fourth
order Runge-Kutta routines with time steps of 0.005,0.02
for 107–1010 time steps. The equilibrium properties have
been readily verified with this method[14,18].

In Fig. 1 some examples of temperature profiles for the
FPU theory are shown. Generically, there are temperature
jumps just inside the boundaries with smooth temperature
variations within. The boundary jumps become larger as one
moves away from global equilibrium. The jumps are dy-
namical in the sense that they depend on the model, the
transport coefficient, heat flow, as well as the type of bound-
ary conditions employed. The temperatures at the boundaries
are at the thermostat temperatures to high degree of preci-
sion. For instance, in the examples of Fig. 1, the boundary

temperatures are equal to the prescribed thermostat tempera-
tures to within few in 105 relatively.

From temperature profiles and heat flow calculations,
Fourier’s law can be verified to hold up to corrections of the
form (1), and the thermal conductivityk can be obtained for
a given temperature and system size. In the one-dimensional
(1D) FPU model,k depends on the system sizeL and does
not display bulk behavior[13]. k is also dependent on the
temperature in a known manner[14]. Generally, in cases
where we have a one-dimensional temperature gradient, the
temperature profiles can be obtained by integrating Fourier’s
law as long as we are not too far from equilibrium
[11,18,19]:

E
T1

Tsxd

ksTddT= − Jx, J = − pkfsqk+1 − qkd + sqk+1 − qkd3g.

s5d

x is the continuum extrapolation of the discrete lattice index
k. We note here thatJ is a constant within the system for a
given set of temperature boundary conditions since there are
no heat sinks or sources inside.T1 in the integral is the tem-
perature extrapolated to the boundary and is explained
below.

In many situations, the temperature dependence of the
thermal conductivity, within some temperature range, can be
well described by

ksTd = cT−g. s6d

While this power law may not hold globally inT, it is often
the case that it is sufficient for the region of interest, which is
the case here. In such a situation, the temperature profile can
be explicitly computed from Eq.(5) to be [18]

Tsxd =5T1H1 −F1 −ST2

T1
D1−gG x

L
J1/s1−gd

, g Þ 1

T1ST2

T1
Dx/L

, g = 1.

s7d

Here,T1,2 denote the boundary temperatures obtained by ex-
trapolating the temperature profile inside the system and dif-

FIG. 1. Some examples of temperature profiles for the FPU
model withL=128. The thermostat temperatures at the boundaries
aresT1

0,T2
0d=s0.88,16.72d ,s2.4,15.2d ,s4.4,13.2d ,s6.6,11.0d for the

four thermal profiles. The profiles predicted from Eq.(7) are indi-
cated by3 and agree well with the results from the numerical
simulations.
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fers from the thermostat temperaturesT1,2
0 by the boundary

temperature jumps. From Eqs.(5) and (6), the temperatures
T1,2 are found to obey a relation

−
JL

c
=

T2
1−g − T1

1−g

1 − g
. s8d

To understand the temperature profile of the whole sys-
tem, we further need an understanding of the temperature
jumps at the boundaries[20]. Similar boundary slips have
been seen in sheared systems and these effects have been
known for a long time in real systems. To leading order, the
temperature jumps can be described by(with n being the
normal to the boundary)

uTi − Ti
0u .

ac

Ls1 − gd
fT2

1−g − T1
1−gg , lU ] Ti

] n
U si = 1,2d.

s9d

Herel is the mean free path of the excitations, which for the
FPU lattice model, is essentially theksTd (up to a constant
factor of order 1) due to kinetic theory arguments[14]. a
reflects the efficacy of the boundary conditions. The last re-
lation is obtained by using Fourier’s law and Eq.(8). The
jumps on the hot and cold side are the same provided the
system is reasonably close to equilibrium. The jumps at the
boundaries and the temperature profile within Eq.(7) de-
scribe the temperature profile of the complete system. The
predicted values for the temperature profiles are plotted in
Fig. 1 at a number points inside the systems(3 symbols)
away from the boundaries and are seen to be consistent with
the simulation results. The thermal conductivity is roughly
constant with respect to the temperature in this region so that
g=0 was used in the profile calculations. This demonstrates
that all aspects of the nonequilibrium temperature profile can
be quantitatively captured through Eqs.(7) and(9), irrespec-
tive of whetherksTd is a power law in temperature for allT
or not. With this understanding ofTsxd we can now turn to
the question of general observables.

III. SPATIAL DEPENDENCE OF CUMULANTS IN THE
NONEQUILIBRIUM STEADY STATE

In nonequilibrium steady states, physical observables
show deviations from their equilibrium values reflecting the
lack of local equilibrium in the system. The behavior of the
observables have been seen to be well described by Eq.(1)
on average, at least in some cases[11]. Here, we now would
like to investigate a more detailed issue—whether these
properties can be used to understand the nature of the spatial
profiles of these observables in a given nonequilibrium situ-
ation. We will assume that within some range ofT andL that
we can represent the expansion coefficients in Eq.(1) as

CO = mOT sOLaO. s10d

The behavior ofCO with respect toT,L clearly must depend
on the dynamics of the theory and is not expected to be
generic.

To study the spatial distribution of physical observables in
nonequilibrium, we make use of Eq.(2) which describes how

the observables should behave in nonequilibrium locally in
space, given the thermal conductivity. Using this property
and Eq.(6), we obtain to leading order that observables will
deviate from their local equilibrium values as

dO = CO SJTsxdg−1

c
D2

= aOTsxd2sg−1d+s. s11d

HereaO is defined through this equation and should be pro-
portional toJ2. This implicitly contains the spatial distribu-
tion since the temperature profile is known and can be un-
derstood as in Eq.(7).

While these arguments apply to any physical observable
in the system, we choose to study cumulants of momentap,
mainly for the following reasons: conceptual and practical.
There seems to be no universal rigorous definition of local
equilibrium, yet the concept in the least seems to include a
unique meaning for temperature, which in this case would
lead to the Maxwellian distribution forp. To put it another
way, when the momentum distribution is not Maxwellian, we
can choose different definitions of the temperature based on
the various moments ofp [2,3]. The cumulants of the mo-
mentum distribution provide insight into how the physical
properties of a nonequilibrium system deviates from those of
local equilibrium. The cumulants are well defined local vari-
ables and their values in local equilibrium are known pre-
cisely. The low order cumulants are defined as

kkp2ll = kp2l, kkp4ll = kp4l − 3kp2l2,

kkp6ll = kp6l − 15kp2lkp4l + 30kp2l3, . . . , s12d

where, inequilibrium,

kkp2lleq= T, kkpnlleq= 0 sn Þ 2d. s13d

This property is also of practical importance. Since the de-
viations we compute can be small, it is desirable to use ob-
servables whose local equilibrium values are known exactly.
In this case in thermal equilibrium,Oeq=0, so we usedO
=kkp2nll /Tn. We list the coefficient for the caseO=kkp4ll in
Table I for the FPUb model as well asf4 theory [18] for
comparison.

Let us investigate how well Eq.(11) describes the spatial
distribution of kkp4ll /T2. We find

kkp4ll
T2 = a4T

2sg−1d+s4

= a4ST1H1 −F1 −ST2

T1
D1−gG x

L
J1/s1−gdD2sg−1d+s4

.

s14d

s4 is the temperature dependence of the coefficientC4 which
is reflected in Table I. To understand the validity of the pre-
diction Eq.(14) , fits were made with just one parametera4
for the whole profile. We find that this describes the situation
quite well, as seen in the examples of Fig. 2, where the
predictions are denoted by dashes. In these figures, we have
compared the fits with the spatial as well temperature depen-
dence ofkkp4ll for the four systems shown in Fig. 1. In this
temperature range, temperature dependence of the thermal
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conductivity is weak so we usedg=0 and s4=−0.14 ex-
tracted from the data in Table I. Similar results were found
for different temperature boundary conditions and for differ-
entL. To further verify the underlying physics, we study the
J dependence of the coefficienta4. The behavior for various
systems, including the four systems in Fig. 1, are shown in
Fig. 3. Each data point represents a system with a particular
size and temperature boundary conditions. The central tem-
perature is aroundT=8.8 and is kept fixed. The observed

behavior is clearly well described bya4,const3J2. The
coefficienta4 seemsL independent and this can roughly be
understood sincec2 grows inL in a manner similar toC4. We
have in addition systematically studied the results to see if
we can discern the contribution of higher order terms in the
expansions(1), (2) (of orderJ4 and higher) but have found
no consistent evidence for them. In other physical situations,
nonanalytic behavior seems to have been seen in some cases
[21,22].

While the logic seems to work for the lowest nontrivial
order cumulant,kkp4ll, we find it instructive to analyze if it
works at higher orders. In this direction, we have analyzed
the next nontrivial orderkkp6ll and have found that its be-
havior is quite consistent with physics of Eq.(11) , as was
the case ofkkp4ll, in all the systems we have studied. In
practice, higher order cumulants are more prone to errors and
the computations are more difficult. The results for the same
four systems in Fig. 1 are shown in Fig. 4. As in thekkp4ll
case, the coefficienta6 showsJ2 behavior within error, as it
should.a6 shows a weakL dependence, as we would generi-
cally expect. A common value ofs6=−1.6 was adopted for
all the data in Figs. 4 and 5. What is evident is that the spatial
behavior of nonequilibrium observables can be explicitly re-
lated to transport and other physical properties of the system
using rather general considerations. From the cumulants we
now consider what can be said about the full momentum
distribution function.

IV. CUMULANTS AND THE DISTRIBUTION

The cumulants are quantitative indicators of the non-
Maxwellian nature of the momentum distribution or the vio-
lations of local equilibrium. All the cumulants are nonzero
unless the system is in local equilibrium, in which case only
the linear and quadratic cumulants are nonzero. There are
very few problems where cumulants can all be computed
analytically and it becomes numerically intractable to com-
pute them as we go to higher orders. It is then of interest to
see how well the lower order cumulants characterize the dis-
tribution. The cumulants are properties of the distribution

TABLE I. Nonequilibrium coefficients C4=smTsdLa for
kkp4ll /T2 [cf. Eqs. (10) and (14)]. The results are shown for the
FPU b model and thef4 theory ind=1–3 dimensions. The value
of s is extracted from fitting to several temperatures.

smTsd a

FPU b model ind=1

T=1 29(5) 0.87(4)

T=8.8 13(1) 0.99(1)

T=88 7.4(4) 1.04(2)

f4theory

d=1 T=1 3.3(24) 0.96(15)

T=5 1.6(6) 1.18(9)

d=2 T=1 1.9(4) 1.09(5)

T=5 0.4(2) 1.6(2)

d=3 T=1 4 (1) 0.96(10)

T=5 0.2(5) 1.6(6)

FIG. 2. Top: Spatial dependence of the rescaled fourth momen-
tum cumulant,kkp4ll /T2 for the four systems in Fig. 1. Larger cu-
mulant values are seen for larger boundary temperature differences.
Bottom: Temperature dependence ofkkp4ll /T2 for the same sys-
tems. In both panels, the predictions Eq.(11) are indicated by the
dashes.

FIG. 3. J dependence of the nonequilibrium expansion coeffi-
cient a4 for various boundary conditionssT1

0,T2
0d and system sizes

L. The dashed line is 3.72J2 and the,J2 behavior of the coefficient
can be clearly seen, as predicted from theory. Each data point rep-
resents a particular temperature boundary condition forL=32s3d,
L=64shd, andL=128ssd systems.
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function, which has an infinite number of degrees of free-
dom. A priori, there is no reason to assume that the lower
order cumulants characterize the distribution. In order to
clarify this issue, first note that the distribution functionfspd
and the cumulants are related explicitly through the generat-
ing function as

E dp eiupfspd = keiupl = expSo
n=0

`
inun

n!
kkpnllD

= expSo
n=0

`
s− u2dn

s2nd!
kkp2nllD . s15d

Here, in the last equality, the symmetry underp↔−p was

used, which leads tokkp2n+1ll=0. We see from this equation
that given all the cumulants(or equivalently, moments), we
may recover the distribution function by performing an in-
verse Fourier transform. However, in practice, not all the
cumulants are available.

It might seem that the symmetry under the reflection
q,p↔−q,−p (lattice indices suppressed here to avoid clut-
tering the formulas) is broken by the boundary conditions of
the system, which are asymmetric in the direction of the
lattice. However, this isnot so; the reflectionq,p↔−q,−p is
preserved under the boundary conditions since the degrees of
freedomq,p are not directly related to the spatial direction
of the lattice. This can be explicitly seen by checking that the
equations of motion preserve this symmetry. It should be
noted thatJ defined in Eq.(5) is symmetric under this reflec-
tion and that it is rather the correlations ofq and p that are
nonzero, not individualq,p’s. In practice, the odd moments
kp2n+1l are computed in all our simulations at least up to
seventh order, in some cases up to 19th order. We have
checked that they are always zero within statistical errors.

Intuitively, we expect the lower order cumulants to be the
leading order results with higher order cumulants becoming
more important as we move further away from equilibrium.
In Fig. 6, we plot therelative differenceof the measured
distribution fspd to the thermal distributionf0spd for the dis-
tribution directly measured in the simulations and the distri-
bution computed from the low order cumulantskkp2,4,6ll. The
comparisons are performed for the four systems in Fig. 1 at a
point in the middle of the system. From these graphs, we
observe the following:(a) The agreement between the distri-
bution computed from lower order cumulants and the distri-
bution is quite good in all cases;(b) the relative deviation
from the thermal distribution is larger as we move away from
equilibrium(largerDT/T), as expected;(c) the small discrep-
ancy between the computed distribution and the measured
one seems to be larger for largerDT/T; (d) the deviation
from the thermal distribution becomes more noisy for
smaller DT/T, since the deviation itself is smaller and the
relative error is larger. We mention here that strictly speak-
ing, the distributions can have different behavior, such as
long tails, beyond the region we have investigated. However,
these tails would have to be quite small since the distribu-
tions decay as expf−p2/ s2Tdg and the agreement is good up
to reasonably largep, as seen in Fig. 6. We have examined
numerous systems for differentT and L and found similar
good agreement. Therefore we see that the lower order cu-
mulants provide good physical observables that quantita-
tively describe the deviations of the systems from local equi-
librium, at least in the FPU model.

It is possible to examine the characteristics of the higher
order cumulants. It should be noted that unlike the even mo-
ments kp2nl, even cumulants,kkp2nll, need not be positive
and in general will not be. So to study the general trend of
the cumulants for higher order, we examine the magnitude of
the cumulants. In Fig. 7(left), we show the behavior of the
cumulants up to 20th order for the same four systems in Fig.
1, specifically for the point at which the momentum distribu-
tions in Fig. 6 were computed. Only data points with reason-
able error are shown and an explanation of the relevant errors

FIG. 4. Spatial dependence(top) and temperature dependence
(bottom) of kkp6ll /T3 for the four systems in Fig. 1. Larger cumu-
lant values are seen for larger boundary temperature differences.
Predictions are shown with dashes.

FIG. 5. J dependence of the coefficienta6 for various boundary
conditions sT1

0,T2
0d and system sizesL. The dashed line denotes

156 J2. ,J2 dependence ofa6 is evident, in agreement with the
predictions. Each data point represents a particular temperature
boundary condition for system sizesL=32s3d, L=64shd, and L
=128ssd, as in Fig. 3.
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is given below. We see an increase in the magnitude with the
order is roughly exponential. This growth is far milder than
the s2nd! seen in Eq.(15) .

The behavior of the higher order cumulants is of some
import and we briefly explain semiquantitatively why they

are difficult to obtain. The difficulty lies mainly in the statis-
tical error in the simulations. This can be estimated from the
number of samples for computing the expectation values as

Dkpnl
kpnl

,
n

ÎN
, s16d

where D denotes the error andN is the total number of
samples or the number of time steps in the simulation. Note
thatkkpnll=kpnl+¯ so that an error estimate for the moment
should suffice as the error estimate for the cumulant. An
adequate value for the moment can be obtained in equilib-
rium,

kpnl
Tn/2 , sn − 1d !! . s17d

Combining these relations, we find the statistical error for the
cumulants which increases rapidly for higher order cumu-
lants,

DS kkpnll
Tn/2 D ,

sn − 1d !! n
ÎN

. s18d

FIG. 6. The relative deviation of the distribution from the Max-
well distribution for the four systems in Fig. 1. Distribution ob-
tained from the cumulantskkp4ll ,kkp6ll (dashed) are compared with
the measured distributions(solid). The agreement is excellent.
DT/T denotes the boundary temperature difference over the average
temperature and is an indication of how far the system is from
equilibrium.

FIG. 7. (top) Higher order cumulants,ukkpnllu /Tn/2 snø20d for
the four systems in Fig. 1,sT1

0,T2
0d=s0.88,16.72d, s3d, s2.4,15.2d,

shd, s4.4,13.2d, ssd ands6.6,11.0d, snd. Only points with reason-
ably small error are shown. The dashed line is 5.0
310−6 exps1.5nd drawn for comparison.(bottom) The equilibrium
cumulants forL=16s3d, L=32shd, L=64snd and L=128ssd
compared to the rough estimate, Eq.(18) (dashes). The cumulants
kkp2ll were measured at the middle of the system with number of
samplesN=109 at T=8.8.
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These estimates for the error also apply to the equilibrium
situation. In contrast to the nonequilibrium cumulants, the
equilibrium cumulants should vanish, with the exception of
kkp2ll. As the measured values will converge to zero, at any
given time step in the simulation, their values will be generi-
cally nonzero. In Fig. 7(right), we compare theequilibrium
cumulants, in the middle of the system to the above error
estimates. It can be seen that the rough estimate(18) seems
to be consistent with the results. As one samples more(N
increases), these will tend to zero. However, for a finite
sample size, this is found to explain the order of the uncer-
tainty.

With N=109 time steps—which we used for the values in
Fig. 7—for eighth and tenth order cumulants, the errors are
0.03 and 0.3. As we can see from Fig. 7(left), this means
that we can obtain up to the eighth or tenth cumulant with
reasonable error for the four systems but the higher order
cumulants are expected to be unreliable for systems closer to
equilibrium. These error estimates are quite consistent with
the estimates we obtain from the statistical properties of the
simulations. These errors can be overcome with higher sta-
tistics which quickly becomes unrealistic for higher order.
We have analyzed systems with various other temperature
boundary conditions andL and have found the increasing
behavior of the cumulants seen in Fig. 7(left) to be quite
generic.

V. SUMMARY AND DISCUSSIONS

The spatial distribution of cumulants in nonequilibrium
steady states under thermal gradients were predicted from
general considerations and tested in the FPU model. The
understanding of the temperature profile for a given nonequi-
librium steady state, combined with the deviations of physi-
cal observables from their equilibrium values, can be used to
develop a consistent description of the spatial distribution of
observables. In principle, the behavior of observables prob-
ably have higher order corrections in the nonequilibrium na-
ture of the system, which in this case is¹T, but higher order
effects could not be separated within the current numerical
simulation results.

We quantitatively analyzed the relation between the mo-
mentum cumulants and the distribution in the nonequilibrium
steady state. It was found that the lower order cumulants
characterize the difference of the nonequilibrium distribution
from the one in local equilibrium quite well. Understanding
and characterizing the properties of the distribution is of
manifest importance since the distribution function for physi-
cal variables allows us to computeany observable con-
structed from these variables. To understand the properties of
any local variable in the nonequilibrium state, the physical
properties of the coordinate variables also need to to be clari-
fied. We have also computed some behavior of higher cumu-
lants. The expansion of the nonequilibrium distribution func-
tion in terms of cumulants has similarities to Grad’s method
in kinetic theory[1]. Grad proposed an ansatz for the non-
equilibrium solution to Boltzmann’s equation by expanding
around the equilibrium distribution in terms of moments of
the molecular velocity. Such a moment expansion has simi-

larities to the cumulant expansion since the cumulants can be
related to the moments. Grad’s approach takes as an ansatz a
finite moment truncation and uses a transport equation to
determine the coefficients in the expansion. In our study, we
extract each cumulant independently from a direct measure-
ment and do not use a transport equation approach. Since the
moments can be computed from the cumulants and we find
that the few leading cumulants reproduce the steady-state
solution quite well, it would be interesting to see how a Grad
solution might be related and explore how a Boltzmann-type
approach might be used to understand states far from equi-
librium, as compared to the direct microscopic molecular
dynamics solutions employed here.

The notion of temperature in nonequilibrium simulations
is unambiguous as long as we adopt a particular definition of
the temperature. In our analysis, we adopted a kinetic tem-
perature, the ideal gas temperature, as such a definition. The
differences in temperature due to various definitions are mea-
sures of deviations from local equilibrium. Seen in this light,
we can understand the nonzero cumulants computed above
as the discrepancy between temperatures defined from the
various moments ofp. Other natural definitions of tempera-
ture, such as “configurational temperature” based on the po-
tential, or that based on the energy density, involve the po-
tential energy(for recent discussions, see, for instance, Refs.
[23] and [18]). In lattice models, definitions of temperature
that involve the potential are subtle, since they are, strictly
speaking, neither unique nor local because the potential nec-
essarily couples different sites. It would be interesting to
compare these temperatures with the kinetic one in the FPU
model.

A comment is perhaps in order: lack of local equilibrium
behavior can in some cases be attributed to the lack of coarse
graining [4]. Heuristically speaking, if one does not have a
large number of degrees of freedom, one cannot see the equi-
librium behavior. This is adifferent phenomenon from the
case at hand, since the effective number of degrees of free-
dom is the number of samples in the ensemble average
which is taken in the time averaging procedure. This number
is huge. In fact, as is well known, in these types of en-
sembles, it makes perfect sense to talk even about the statis-
tical mechanics of one spin degrees of freedom. This is also
quite clear from our results; the deviations from local equi-
librium seen in Figs. 2 and 4 and Eq.(2) are of definite sign
and no amount of averaging over space will make it zero. So
coarse graining willnot average out the violations of local
equilibrium seen above. Also, the non-local equilibrium
properties found in this paper pertain to systems in the non-
equilibrium steady state and therefore are not transient.

We have also performed similar analyses of spatial distri-
butions on thef4 model. The physical properties of the
model are different from those of FPU model and we intend
to report on this in the near future.
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